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Abstract 

A numerical method is developed for calculating the 
thermal diffuse scattering (TDS) correction from 
phonon inelastic scattering in a neutron diffraction 
pattern measured by the time-of-flight method. The 
correction is evaluated for a nickel powder spectrum at 
room temperature. It is shown to be more important 
than had been suggested previously. It gives rise to a 
reduction of the apparent Debye-Waller factor by 
about 10%. It may also lead to the appearance of the 
higher-order Debye-Waller factor previously ascribed 
to anharmonicity. 

Introduction 

In a diffraction experiment, the measured peak intensity 
of a Bragg reflection will in general include a 
contribution arising from the inelastic scattering of the 
incident beam by phonon excitations; this is referred to 
as the thermal diffuse scattering (TDS). Several 
theories have been developed to correct data from 
monochromatic X-ray or neutron diffraction experi- 
ments for the effects of TDS (e.g. Walker & Chipman, 
1972; Cooper, 1971; Suortti, 1967). Recently, much 
attention has been given to the advantages of pulsed 
neutron sources for diffraction (Carpenter, 1977). In 
this type of diffraction experiment, scattering from 
neutrons with different wavelengths present in the 
neutron pulse can be analysed by timing over a flight 
path of a few metres to give the diffraction pattern at 
one or more fixed angles as a function of wavelength. 
Analogous experiments with a polychromatic X-ray 
beam, such as that from a synchrotron radiation 
source, can be performed with an energy-sensitive 
X-ray detector (Buras, Staun Olsen & Gerward, 1976). 
Its high epithermal flux compared with a reactor 
(Windsor, 1977) allows diffraction at good resolution 
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to be performed over a wide range of scattering 
vectors. However, if these sources are to be success- 
fully used for accurate structural studies it is important 
for TDS corrections to be obtained for time-of-flight 
experiments. 

Windsor & Sinclair (1976) obtained the neutron 
diffraction spectrum of powdered nickel by the time- 
of-flight method and argued that, at the high scattering 
vectors used, thermal diffuse scattering would appear 
as a relatively smooth background beneath the Bragg 
peaks and would have only a small effect on the 
integrated intensities. This is because the multi-phonon 
scattering, which grows with increasing scattering 
vectors, is relatively featureless on a time-of-flight scale. 
In addition, the increasing overlap of the Bragg peaks 
implies overlap of the TDS around each peak. 
However, the values obtained for the Debye-Waller 
exponent B [defined in equation (22)] were smaller than 
in previous measurements and this was explained in 
terms of anharmonicity in the lattice potential. 

It is well known (Willis, 1969) that the effect of TDS 
in a conventional constant-wavelength experiment is to 
produce an apparent reduction in the value of B if no 
corrections are applied, and similar effects in a 
time-of-flight experiment could provide an alternative 
explanation of the results of Windsor & Sinclair. It is 
therefore of interest to develop a TDS correction theory 
to investigate this effect. 

The time-of-flight experiment 

Since the theory of the TDS correction in a time- 
of-flight experiment is different from conventional 
treatments, a brief description of the relevant 
instrumental details will be given. A full description of 
the Harwell back-scattering spectrometer (BSS) used in 
this work is given elsewhere (Windsor et al., 1977). 

A schematic diagram of the instrument is given in 
Fig. 1. Electron pulses of duration 2 ~ts and repetition 
frequency 192 Hz are incident on a natural uranium 
target. The fast neutrons produced are moderated in a 
© 1980 International Union of Crystallography 
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slab of polyethylene. The flux of epithermal neutrons 
from the moderator will have a characteristic time and 
energy distribution determined by the details of the 
moderation process, and these two functions are 
required for the evaluation of the TDS. The neutron 
beam travels along a 12 m flight tube to the 
spectrometer. The detector array is positioned 2 m 
from the sample in a time-focusing arrangement at a 
mean scattering angle of 170 °. A time-of-flight anal- 
ysis of the scattered neutrons is carried out with a 
2 ~s channel width. 

To correct for the energy dependence of the counter 
efficiency and the incident neutron flux, it is necessary 
to normalize the time-of-flight spectrum. After cor- 
rection for the background and the scattering from the 
sample holder, this normalization can be carried out by 
comparison with the spectrum obtained from a plate of 
polycrystalline vanadium. The required cross section 
for the sample for channel n is given by 

do e v N v Is (n) - -  I t(n) 

d-----~ (n) 4n N s Iv(n)--  Ib(n)'  (1) 

where a v is the incoherent scattering cross section of 
vanadium, N v and N s are the numbers of atoms of 
vanadium and sample in the beam, and I(n) denotes the 
number of neutrons detected in the nth time-of-flight 
channel (scaled by the monitor count). The suffices s, c, 
V and b refer to sample, empty can, vanadium and 
background spectra (Windsor & Sinclair, 1976). 
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Fig. I. The back-scattering spectrometer. 

Assumptions of the theory 

For the following treatment we will make certain 
simplifications which are similar to those made in 
previous TDS theories (e.g. Suortii, 1967). 

(i) We consider a cubic crystal with one atom per 
unit cell. (The present theory can easily be extended to 
crystals with more than one atom per unit cell because 
the one-phonon scattering cross section is small at high 
energies and the optic phonon modes in such crystals 
can therefore be neglected.) 

(ii) We neglect multiphonon scattering. As we have 
already pointed out, the multiphonon scattering is 
smoothly varying and so has a relatively small effect on 
the intensities of the Bragg peaks. 

(iii) We replace the Brillouin zone by a sphere of the 
same volume. This preserves the correct number of 
phonon modes in each BriUouin zone. Suortti cal- 
culated the TDS correction for nickel with both Debye 
and linear-chain dispersion relations and found only 
small differences in results, suggesting that the scatter- 
ing from phonons with wavevectors near the edge of 
the Brillouin zone produces only a small contribution to 
the TDS. It is at the edge of the Brillouin zone when 
inelastic scattering is small that differences between the 
assumed spherical shape and the correct form would be 
important. 

(iv) We assume a linear-chain phonon dispersion 
relation 

oJj(q) = 2cj(qm/n) sin (nq/2qm), (2) 

where q is the phonon wavevector, qm is the radius of 
the equivalent Brillouin zone and o~j(q) and cj are the 
phonon angular frequency and sound velocity respec- 
tively for the j th  polarization branch. This dispersion 
relation is usually closely followed by cubic crystals, 
but we note that it implies isotropy which means that 
the sound velocity is independent of direction and that 
the phonons are polarized purely longitudinally (1 
branch) or purely transversely (2 branches with equal 
sound velocities). To justify the use of an isotropic 
model we note that, since neutrons with a given 
time-of-flight between source and detector can have 
different combinations of incident and scattered 
energies, the inelastic scattering in a given time-of-flight 
channel can arise from a number of phonon wavevec- 
tars (of varying direction and therefore sound velocity 
in the real crystal). Hence, it is reasonable to account 
for this in terms of an average sound velocity for each 
mode. Lisher (1976) carried out TDS calculations for a 
conventional diffraction experiment on lead by a 
variety of methods and found that there was a quite 
considerable variation between isotropic and anisotropic 
models. However, the value of the Debye-Waller factor 
was relatively insensitive to the correction method used. 

As a result of (iii) and (iv), the problem is essentially 
two-dimensional. For a powder sample the experi- 
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mental geometry consists of a fixed direction for the 
scattering vector and all possible orientations for the 
reciprocal-lattice vectors. The equivalent representation 
used here will involve fixed reciprocal-lattice vectors 
with the scattering vector taking all possible directions. 

Theory of the correction 

We will obtain an expression for the inelastic scattering 
around a single reciprocal-lattice point and can then 
repeat the process for all Bragg peaks in the diffraction 
pattern. In addition, we will begin by considering a 
fixed incident neutron wavelength and later integrate 
over the moderator spectrum. Fig. 2 is a reciprocal- 
lattice diagram of the scattering process, and ~ and x 
are the scattering and reciprocal-lattice vectors respec- 
tively. 

If an incident neutron of wavevector k is scattered 
into a state with wavevector k', the conditions for 
one-phonon scattering are (Marshall & Lovesey, 1971) 

h 2 
- - ( k  2 - k '2) = he9 = ehogj(q) (3) 
2m 

and 
~: = x + eq = k -  k', (4) 

where x is a reciprocal-lattice vector and e = 1 for 
phonon creation and - 1  for phonon destruction. The 
standard expression for the one-phonon scattering 
cross section, d 2 a / d O  d E '  (Marshall & Lovesey, 1971 ; 
Squires, 1978), can be rewritten 

d 2 (7 

dO dk' 

N o  c k' z I~:. e~(q) 12 
_ _  h 2 ~  "~' e-2W(r) 
8rcMm k ~. ogj(q) 

X [nj(q) + ½ + ½el ~[(.0 -- eOgj(q)l, (5) 

where o c is the coherent neutron scattering cross section, 
M is the nuclear mass, N is the number of atoms in the 
scattering crystal, e -2W(~) is the Debye-Wal ler  factor, 
nj(q) is the Bose-Einstein factor for phonons of 
wavevector q, and ej(q) is the polarization vector for 
the j th  phonon branch. 

A B 

Sphere of 
constant 

0 
Fig. 2. Reciprocal-space construction for TDS scattering. The 

sphere is the equivalent Brillouin zone and the angle ~o denotes the 
orientation of the powder crystallite relative to the scattering 
vector K. 

d2a/dJ2dk ' is directly related to the probability that 
a neutron of incident wavevector k is scattered with 
wavevector k' into the solid-angle element dO. Since we 
are considering only one incident wavelength k is fixed, 
and in the time-of-flight method the scattering angle is 
also constant. Hence this cross section is equivalent to 
the probability of scattering with a scattering vector 
I~l. The direction of ~ (relative to x) is determined by 
the energy conservation condition (3), and hence this is 
equivalent to a J function in the angle ~0 in Fig. 2. 
Therefore, 

J [ h w -  ehwj(q)] = A J(~o-- ~Oo), (6) 

where A is a constant and ~o o is the value of ~o at which 
there is energy conservation. By integrating (6) with 
respect to ~o we can determine A, 

1 d 
A =  , w h e r e J = - e h - - [ o o i ( q ) ] .  (7) 

IJI do 

With the dispersion relation (2) we obtain 

I JI = h c j - -  sin ~ cos . (8) 
q 

To find the experimental cross section d 2 a /dO  dk' we 
must average over all crystallite orientations 

d 2 (7 __ N e  c h 2 k' 2 Z q 

dJ2dk'  16zcMm k j ,  cjcos(zcq/2qm) 

1 e -2W(r) 
X I1~. ej(q) l  2 [nj(q) + ½ + ½~]. 

Kr ~)j(q) 

(9) 

This is the basic expression for the TDS cross section. 
In the classical limit nj(q) ~ knT/hooj(q), where T is the 
sample temperature. Since ogj(q) oz q for small q, the 
cross section given by (9) diverges as 1/q around the 
Bragg point. In addition, there is a divergence at q = 
qm" This arises from the flat nature of the phonon 
dispersion relation at the Brillouin zone boundary 
producing a large density of states in energy and hence 
strong scattering into a small range of k'. The true 
Brillouin zone is not a constant q surface and therefore 
the theory is clearly inappropriate here. In our model 
there will be strong scattering for all phonon wavevec- 
tors near the Brillouin zone boundary, but since this 
will occur for a wide range of combinations of incident 
and scattered neutron energies it should be a smooth 
effect in the calculations. In practice, when we evaluate 
(9) we avoid this singularity by excluding values of q 
close to qm" 

The scattered neutrons produce a count rate at the 
detector of 

d2o t "  t "  

J AO / i(k) / P(k') dk' Ok, (10) 
J J dO dk' 
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where AX2 is the solid angle subtended by the detector 
at the sample, i(k) is the incident neutron-flux spectrum, 
and P(k') is the counter efficiency for neutrons of 
wavevector k'. 

The scattering for some (k,k') combination is 
detected at a time-of-flight 

t ( k , k ' ) = - ~ \ - ~ + - - ~ 7  , (11) 

where L 1, L 2 are the flight paths for incident and 
scattered neutrons. Hence if I(t ')  dt' is the number of 
neutrons detected in a time-of-flight interval dt', 

and 

f f d 2 a  P(k') I(t ') = AI2 i(k) d~  dk - - - - - - 7  

x J[t' -- t(k,k')l dk dk' (12) 

j = f I(t) dt. 

We require an effective TDS cross section da/dX2 as 
a function of time-of-flight which can be subtracted 
from the experimental normalized spectrum of (2), 

do f I ( t ' )dt"  

d--~ (t) = A-Qi(ko) Ako(t) P(k° ) , (13) 

where the integral is over the required time-of-flight 
channel and k 0 is the wavevector of elastically scattered 
neutrons with time-of-flight t. Since the moderator 
neutron spectrum and counter efficiency are 
wavelength dependent, they both appear in the 
numerator and denominator of (13). It is assumed that 
the effect of inelastic scattering from the vanadium on 
the spectrum normalization can be taken into account 
in an average way by using the elastic wavevector value 
k o. Ako(t) is the spread in k 0 equivalent to the 
time-of-flight channel width At, and from (11) 

Therefore, 

mL 
dko(t) =--2-; At; L = L, + Lz. (14) 

tlt" 

d 2 t7 
f i(k) ~ P(k') dk' dk 

da d[2 dk' 
- - ( t ) =  (15) 
dl2 (mL/ht 2) dtP(k o) i(k o) 

To evaluate this expression we replace the integral by a 
summation over a grid of (k,k') values with spacing Ak, 
Ak' respectively, 

da 1 dk Ak' x--, Nac h3 t2 k' 2 

d----~ ( t ) -  i(ko~-- ~ P(ko) At ~ 16zrm 2 ML k 

qjP(k')  i(k) 1 e -2wCx) N-" x 
,Z cj c o s  (qj 7~/2qm ) l~r coj(q) jE 

x f~:.es(q)/z [nj(q) + ~ + ½el, (16) 

where 

and 

t =  ( m / h ) ( L 1 / k  + t 2 / k ' )  

2 (h 
q = - qm sin-1 I k 2 - -  k' 21 ~ . 

rc 2m 2cj qm 

(17) 

(18) 

E v a l u a t i o n  o f  the  T D S  c o r r e c t i o n  

The evaluation of (16) is carried out with a square grid 
of (k,k') values centred at the Bragg point. Ideally, the 
grid spacing should correspond to the experimental 
time-of-flight channel width of 2 /as, but in order to 
reduce the computation time a coarser grid was used 
equivalent to a channel width of 4 gs for times of flight 
of less than 2750 ~ts, and 8 ~ts elsewhere. In all cases 
the grid size was much smaller than the Bragg-peak 
width. Because of the singularity at q = 0 the central 
grid element has to be treated specially. It is first 
divided into four subelements and (l 6) evaluated over 
this subgrid. This process is repeated until successive 
values of the cross section agree to within 5 %. 

For a given (k,k') combination, the value of q for 
each mode can be determined from the energy transfer 
and (18) and, if this combination can give scattering, 
the direction of q, and hence ~:, can be determined. All 
the required terms in the cross section can then be 
calculated. Since the polarization of each mode is either 
purely longitudinal or transverse, the term I ~:. es(q) l 2 
becomes for the longitudinal branch I K.el(q)l 2 = 
x z cos z a, and for the two transverse branches I~:. e2(q)l 2 
+ I~:.ea(q)l 2 ---- ~c 2 sin 2 a (Suortii, 1967). The angle a is 
shown in Fig. 2. The calculated value of de/dO is then 
added to the accumulated total for the appropriate 
time-of-flight channel and the process repeated for the 
next (k,k') combination on the grid. The range of k and 
k' is restricted by the maximum phonon energy and the 
geometry of Fig. 2. In the present calculation we have 
assumed perfect back scattering since this simplifies the 
method. Since the actual scattering angle is 170 ° this 
should not introduce any serious error, but it will result 
in the TDS peak occurring in a slightly different 
channel from the Bragg peak. This can be corrected by 
a simple translation of the inelastic-scattering profile. 

The incident neutron spectrum is obtained from the 
scattering of a vanadium sample 

2 z 2 z [ 1.8922 -0.398 29.22 e -z''s/~' ] 

i(k) = ~ i(2) = ~ 1 + 2-526 + 2' ' 

(19) 

where 2 is expressed in ~ngstr6ms (Clarke, 1978; 
Mildner et al., 1978). The two terms in the square 
brackets represent the flux arising from the slowing- 
down and Maxwellian regions of the spectrum respec- 
tively. The detector efficiency can be determined from 
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the counter diameter, pressure and the wavelength- 
dependent absorption cross section of the 3He. 

The calculations have been carried out for nickel at 
room temperature over the range of sin 0/2 from 0.7 to 
1.6 A -1. At higher values the large density of peaks 
causes a large increase in the computation time. The 
values of the elastic constants at room temperature 
(Kittel, 1971) have been used to obtain the average 
sound velocity along the three symmetry directions. 
Values of 5912 ms -1 for the longitudinal mode and 
3148 ms -~ for the two transverse modes were obtained. 

Application of the correction 

To subtract a TDS correction from the observed data 
requires a knowledge of the resolution function of the 
spectrometer [which is by definition for a powder the 
response of the spectrometer to a delta function in 
(K, to) space]. This is given to a good approximation by 
the Bragg-peak shape. Of course the observed peak 
shape also includes the effect of TDS so we cannot 
obtain the true resolution function, but this is a minor 
effect. To apply the resolution correction we calculate 
the TDS profile around each Bragg peak and combine 
the results to produce a TDS time-of-flight spectrum. 
This is then convoluted with a function describing the 
Bragg-peak shape, 

(3O 

t ) ITDS(t ) dt', (20) ITDs(t)= f G ( t - -  ' o , 
0 

where G (At) is the line shape of a Bragg peak centred at 
At = 0 which is described by three wavelength- 
dependent parameters (Cole & Windsor, 1979), and 
IODs(t ) and IXDS(t) are the TDS profiles before and 
after convolution respectively. Fig. 3 shows a section of 
the TDS profile compared with the total observed 
spectrum. 

We can make use of the calculated TDS profile in 
three ways. After subtraction of the TDS profile the 

sin 0 
- -  (A-') 

), 
1.25 130 1 35 

3 

~2 

• ~ 1 -  ~ 
1 

o 
Iros 

2900 28'00 2700 2700 
Time-of-flight (ps) 

Fig. 3. A section of  the thermal diffuse scattering profile for 
nickel at room temperature. The lower curve is the TDS on the 
same scale as the experimental spectrum (centre). The upper curve 
is the TDS magnified by a factor of  ten. 

resultant spectrum may be used either for profile 
refinement (Windsor & Sinclair, 1976) or for the 
determination of the integrated intensities of individual 
peaks (Cole & Windsor, 1979). This subtraction 
requires absolute normalization of the experimental 
spectrum and this is done by comparing the integrated 
peak intensity with the known theoretical result 
(obtained from values of the coherent neutron-scat- 
tering cross section and Debye-Waller factor) and 
obtaining the appropriate scale factor. To obtain the 
ratio a = ITDS/Ip, where ITDS and Ip are the integrated 
intensities of the TDS and the Bragg peaks, the TDS 
profile and the Bragg peak are integrated between the 
same limits. In each case the background is subtracted 
by linear interpolation between the integration limits. 

I 0 = I p -  ITDS,  

o r  

I 0 = Ip(1 - -a) ,  where a =  ITDS/I p. (21) 

A simple test of the theory 

Before making full use of the TDS correction theory it 
is desirable to have some indication that the predicted 
TDS scattering is of the correct magnitude. In the 
present experiment one thing we can do is to compare 
the peak shapes of the nickel spectra at 77 K and room 
temperature. If there were no inelastic effects it should 
be possible, with an appropriate scale factor and shift, 
to superimpose a given Bragg peak in both spectra. If 
we assume the inelastic scattering is negligible at low 
temperatures, the practical result of such a comparison 
reveals the presence of wings on the high-temperature 
peak. Owing to the peak asymmetry (Windsor & 
Sinclair, 1976), such an analysis is only possible for the 
sharp leading edge. Fig. 4 shows the magnitude of the 
observed wing together with that calculated with the 
TDS theory. Although the effect is small there is 
reasonable agreement. 

The magnitude of the correction 

To determine the magnitude of the TDS correction the 
integrated one-phonon scattering under the Bragg peak 
has been determined. These calculations were carried 
out for nickel at 300 K. We have not included the effect 
of overlap of adjacent peaks or the resolution effect. In 
this way we expect a fairly smooth wavelength 
variation of the correction factor a of (21), and the 
inclusion of these effects should not introduce any 
serious differences since in the range of calculation 
there is no great overlap of adjacent peaks. The result is 
shown in Fig. 5. The scatter in the calculated values of 
the TDS correction arises from uncertainties in 
deciding how much of the TDS appears in the Bragg 
peak region. This is dependent on the integration limits. 
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Two features of the plot are apparent, the first being 
the change in level of the correction around sin 0/2 = 
0.8 A -1. This is probably related to the fact that for 
slower-than-sound neutrons the one-phonon inelastic 
scattering occurs as a flat background beneath the 
Bragg peak and is therefore accounted for by the usual 
background subtraction (Willis, 1969). In this time- 
of-flight experiment, elastically scattered neutrons with 
a velocity equal to the minimum sound velocity of 3148 
m/s  used in the calculations would appear at sin 0/2 = 
0.7 A -l ,  and this is close to the position at which the 
change in level of the correction factor occurs. 
However, the fact that the scattering at a given 
time-of-flight channel corresponds to a range of 
incident neutron velocities means that we cannot say 
that all the inelastic scattering below sin 0/2 = 0.7 A -~ 
arises from slower-than-sound neutrons. The different 
experimental arrangements in the continuous-beam and 
time-of-flight methods will also lead to a different 
behaviour of the TDS correction factor, but there does 
seem to be some similarity at low energies. 

The second important feature of Fig. 5 is the 
wavelength variation of the correction factor. The 
Bragg-peak intensity Ip, which is measured by in- 
tegration, is 

Ip oc e-2W(1 + a) oc e - (2w-a)  ( i fa  is small). 

Now, in a harmonic crystal W is proportional to 
(sin 0/,~,) 2 (Marshall & Lovesey, 1971), but the effect of 
anharmonicity is to introduce higher-order terms 
(Willis, 1969) 

W =  B(sin 0/I )  2 + C(sin 0 / i )  4 + . . . ,  (22) 

1 

k 
. . . . . .  ... ~ .  ~ . ~  

Pea k 
i n t e n s i t y  

0 -8 -16 -2 / ,  - 3 2  

T i m e - o f - f l i g h t / # s  (measured  f r om peak c e n t r e  } 

Fig. 4. The wing on the nickel (553/731) peak due to TDS. The 77 
K (0) and 290 K (+) peaks are shown, together with the 
calculated TDS profile( . . . . .  ). 

where C depends on the indices of the Bragg reflection. 
Hence if a is proportional to (sin 0/1) 2 we would obtain 
a value of B reduced from the true result. But if a varied 
as (sin 0/1) 4, the uncorrected spectrum could lead to a 
value for C even if the crystal were harmonic. The two 
curves give values of C and show that, if inelastic 
scattering is neglected but the crystal is assumed to 
have no anharmonic forces, the variation of peak 
intensity with (sin 0/1) 4 is similar to that calculated for 
TDS. 

In a conventional constant-wavelength diffraction 
experiment the TDS correction factor a is generally 
proportional to (sin 0/1) 2 (Willis, 1969). In the 
time-of-flight method the constant width of the time 
channels leads to an increase in the volume of 
reciprocal space seen by each channel as the scattering 
vector increases. Hence more phonons can contribute 
to the scattering in a given channel at large values of 
(sin 0/1) and so the correction factor will rise faster 
than K 2. 

When the uncorrected spectrum of nickel at room 
temperature is analysed by profile-refinement methods, 
it is found that anharmonic Debye-Wal ler  factors are 
obtained with values of C in the region -0 -01  to - 0 . 0 2  
A 4 (Windsor & Sinclair, 1976; Cole, 1978). These are 
comparable with the above effective values, and so it 
would appear that the TDS effect rather than an- 
harmonicity is the origin of the 'anharmonic '  D e b y e -  
Waller factor. Even if there is a sizeable anharmonic 
effect it is clearly necessary to obtain reliable TDS 
corrections if a useful analysis is to be carried out. 

TDS-corrected Debye-WaUer factors 

The integrated peak intensities for both corrected and 
uncorrected spectra are shown in Fig. 6 in the form of a 
Wilson plot. This integration is not restricted to 

sin 20 
- -  IA-') 

05 1.0 15 20 

12 ' ' ' C " -0.01 < / / ~  

" I 
10 

~ 8  

. C = -0.008 A" e 6 " C = -0.008 A" 

4 

2 

20 40 60 80 100 120 
h 2 +/d + F 

Fig. 5. The TDS correction factor as a function of scattering 
vector, hkl is the index of the Bragg reflection. The solid 
lines represent effective anharmonic contributions to the 
Debye-Waller factor. The points represent the calculated 
correction. The scatter is due to difficulties in background 
subtraction. 
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non-overlapping peaks (Cole & Windsor, 1979). A 
least-squares fit gives the corrected value of B as 0.38 
+ 0.02 A 2 compared with the uncorrected value of 
0.35 + 0.02 A 2. The corrected value is in better 
agreement with previous X-ray results of 0.386 + 
0-012 A 2 (Paakkari, 1974) and 0.37 + 0.02 A 2 
(Inkinen & Suortti, 1964), and theoretical values of 
0.381 + 0.008 A 2 (Barron & Smith, 1966) and 0.375 
A 2 (Feldman, 1969). It is, however, much lower than 
the only previous neutron value of 0.426 + 0.009 A 2 
(Cooper & Taylor, 1969). 

Profile refinement offers an alternative method of 
analysis and the method used was similar to that 
described previously (Windsor, 1975; Windsor & 
Sinclair, 1976), but with the modified peak-shape 
description (Cole & Windsor, 1979). The values 
obtained for the Debye-Waller terms B and C are 
shown in Table 1. Profile fits have been carried out over 
several ranges of the spectrum with both corrected and 
uncorrected data. In case P, the value of B has been 
held constant, this value being that obtained from the 
X-ray measurements. The fit quality x 2 is defined by 
Windsor & Sinclair (1976) and a small value indicates 
a good fit. 

The results of Table 1 show that, over a given range 
of sin 0/2, the TDS correction increases the value of B 
by about 10%. This is consistent with the results of the 
Wilson plots. Furthermore, there is a significant 
decrease in the value of x 2 indicating a better fit. Fits P 
and R include the result of fitting a quartic Debye- 

"~ z, + , 
E 
3 Uncorrecled A2 

~ B = 0 3 5 t 0 0 2  

3 

Corrected \ ~ • 
= 0-38 B -* 0 0 2  ]~2\÷ \ 

*X. '~ 

I 21 ~ " o o'.5 1!o ~!5 o 25 30 
s ~2.e (~ -2 )  

Fig. 6. Wilson plots for nickel at room temperature before (0) and 
after (+) TDS correction. The lines are the least-squares fits. 

Waller term and no significant anharmonic behaviour is 
found. The value of x 2 is unchanged compared with a 
fit to the quadratic term alone over the same range of 
this spectrum. These results contrast with those 
obtained if both the terms B and C are determined by 
profile fitting to an uncorrected spectrum (Windsor & 
Sinclair, 1976; Cole, 1978). The mean value of B is 
0.375 + 0-007 A 2 which is in excellent agreement with 
the previous X-ray measurements. It also agrees with 
the neutron measurements of Windsor & Sinclair if we 
regard their value of the quartic term C as a TDS 
correction, as suggested by Fig. 5. 

Conclusions 

We have shown that the TDS correction for a 
time-of-flight diffraction experiment is more important 
than has been previously suggested, and may be 
simulated by an effective anharmonic behaviour in the 
Debye-Waller factor. The greatest difficulty with the 
present method of evaluating the correction is that a 
numerical method must be used and time-consuming 
computations are involved. It would be preferable to 
have a simple analytical function describing the TDS 
profile around each Bragg peak, which could be easily 
determined from appropriate values of the elastic 
constants of the crystal. 

A further difficulty arises with the profile refinement 
in analysing the spectra. In this process some assumed 
analytical function must be used to describe the 
background level. However, if all the inelastic scatter- 
ing (one- and multi-phonon) could be calculated the 
resultant corrected spectrum would simply contain the 
Bragg peaks on the almost constant incoherent 
background. This would allow much more reliable 
results to be obtained from the profile-analysis method. 

Finally, we note that the present method, in addition 
to being confined to cubic crystals, is restricted to use 
with powder samples. At first it might appear that this 
is a more complex situation than the single-crystal case 
but the reverse is in fact true. We have been able to use 

Table 1. Results of profile fits to TDS-corrected and 
uncorrected spectra 

Fit p Q R 

Range ofsin 0/2: lower (A -~) 1.08 0.76 0.91 
upper (A -=) 1-43 1-58 1.55 

Number of channels 400 1220 800 

Fit to corrected spectrum, 
B only 
B (A 2) 0.37+0.01 0-39 + 0.01 0.365+_0.007 

Fit quality x 2 1-49 1-90 1.70 

Fit to corrected spectrum, 
B and C 
B ( x.2, 0-38 (fixed) 0-39_+0.06 
C (A 4) -0.004 + 0-004 - -0.010_+0.020 

Fit quality x 2 1.49 1-70 

Fit to uncorrected spectrum 
B (A 2) 0.34_+0.01 0-375_+0.002 0.330+0.007 

Fit quality x 2 1-85 2.54 2.02 
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a simple numerical method. Any combination of k and 
k' implies some q value by energy conservation, and 
the distribution of crystaUite orientations means that if 
the vectors ~:, x and q can form a triangle then there are 
some crystal grains which can produce phonon 
scattering. For a single crystal, the restriction of the 
fixed crystal orientation means that the allowed (k,k') 
values will not necessarily be represented by points on 
the grid which we use. In addition, a study of TDS in a 
single crystal requires a knowledge of the resolution 
function of the spectrometer. 
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Abstract 

The concept of generalized representation for structure 
seminvariants is introduced. When a structure semin- 
variant is estimated via a generalized representation an 
amount of a priori information can be exploited larger 
than that accessible via the mere representation. 

1. Introduction* 

Hauptman (1975) first suggested that a s.i. or a s.s. can 
be estimated with increasing reliability via a sequence 
of sets of diffraction magnitudes (sequence of nested 
neighbourhoods) each contained within the succeeding 

* Symbols and abbreviations are defined in the Appendix. 
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one. Independently, Giacovazzo (1975) had already 
applied the idea to the one-phase s.s.'s in P i ,  whose 
estimation was performed via the magnitudes in their 
second neighbourhoods. Hauptman (1976)described 
heuristic methods of finding sequences of nested 
neighbourhoods for certain s.i.'s or s.s.'s. 

A more general method for estimating s.s.'s was 
described by Giacovazzo (1977) (from now on, paper 
I). For any s.s. ~, the method arranges in a general 
way the set of reflections in a sequence of subsets 
whose order is that of the expected effectiveness (in the 
statistical sense) for the estimation of ~. These subsets 
do not coincide in general with the corresponding 
nested-neighbourhood sequence given by Hauptman 
and were called phasing shells in order to stress this 
difference. Giacovazzo's method introduces the idea 
that any s.i. or s.s. • can be represented by one or 
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